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The paper discusses some aspects of scattering of electromagnetic radiation in inhomogeneous media
from the point of view of information theory.

A theory is developed, based on a concrete model of a typical scattering experiment, which takes into
account the finiteness of the scattering volume and the coherence characteristics of the radiation; as a
conclusion, the speckle noise which is superimposed over the signal is brought into evidence. More exactly,
itis shown that the spurious oscillations are due to the non-vanishing character of the convolution square of
the inhomogeneity distribution function at the point of truncation in the primary space.

Subsequently, the structural information of scattering experiments is examined and the finite logon-
content determined. The sampling interval is established and the resolution achievable in scattering
measurements is deduced; also the means by which it can be improved are examined.

An analysis of the quantitative information obtainable is pursued and the desirability of filtering is
suggested. Finally, the way in which the partial coherence effectively acts as a low-pass filter is studied.

PHILOSOPHICAL
TRANSACTIONS
OF

1. INTRODUCGTION

The aim of this paper is to discuss some aspects of scattering of electromagnetic radiation by
amorphous inhomogeneous media from the point of view of information theory. The problems
treated here, have already been analysed in a few previous articles (Ross 1968, 19694, b) first
from an ideal classical electromagnetic standpoint and then by taking into account the coherence
characteristics of the radiation field. The relevance of their reconsideration and interpretation
from the point of view of information theory} is immediate: besides the fact that, by drawing
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such a parallel, scattering determinations acquire a new perspective, this kind of analogy,
between different fields which have a logically equivalent structure, can clarify phenomena in
one discipline when corresponding events are understood in the other.

+ Present address: Research Department, I.C.1. Plastics Division, Welwyn Garden City, Herts., England.

1 Although criticism has been raised against this name, it is being kept here because of its widely spread use; in

this paper information theory designates what Gabor (19564) defines as communication theory, i.e. structural
theory and statistical theory.
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178 G. ROSS

As the theory of communication has received considerable attention during the last twenty
years, its heuristic value having been acknowledged, the beneficiary would be, of course, the
theory of scattering. In fact, the theory of information, leading to a new investigation of the
efficiency of different methods of observation, as well as their accuracy and reliability, has
already found wide applications in various fields: telecommunications, computing, pure physics
and discussion of the fundamental process of scientific observation (Brillouin 1967). Its import-
ance for optical problems has been made clear by the contributions of Gabor, Fellgett, Linfoot,
Blanc-Lapierre, to name but a few. k

The approach adopted here is justified and becomes obvious on surpassing the concept of
scattering determination as a simple Fourier correspondence between primary and Fraunhofer
space, which is valid only for an ideal situation. If one takes into consideration the conditions of
a real experiment, one is led to the conclusion that exact results are impossible and it becomes
appropriate to treat a scattering experiment as a means of obtaining information about the
structure of a medium, to treat the angular distribution of intensity as a received signal which
gives information about the distribution of inhomogeneity, rather than being its power spectrum.
The information on the structure of the sample transmitted to the observer is always limited,
because it has to be obtained through a communication channel of finite capabilities—the
instrument. The fundamental question, therefore, which we shall try to answer in this paper is:
what do we really observe in a scattering experiment?

The informational approach to scattering determinations was prompted by a phenomenon
remarked during some light scattering experiments. In an attempt to raise the low levels of
scattered radiation by using a laser as light source, it was noticed that the angular distribution
of intensity becomes very noisy and, in fact, a speckled pattern was easily seen with the naked eye
or recorded on a photographic plate. It was not the only occasion, nor the first time that this
phenomenon attracted attention. The ‘speckle effect’ observed whenever light having a high
degree of coherence is scattered by a medium exhibiting random inhomogeneity, had already
been known for many years and discussed in several papers. The interpretation conveyed by
various authors (for example, Langmuir 1963 or Suzuki & Hioki 1966) is that the cause of this
phenomenon is the high coherence of the radiation. Post hoc, ergo propter hoc is, however, not valid
logically. In fact, all theories of scattering in random inhomogeneous media published so far
assume complete coherence (although this is not usually stated explicitly) and none of them
predicts the occurrence of speckles. It is therefore probably pertinent here to re-examine the
approach to this subject and to extend the treatment to real cases. This topic, developed in the
following section, is based on and represents an improved version of the theory first submitted

in Ross (1969 b).

2, THE REAL SCATTERING PROBLEM

The problem of scattering of radiation by a random inhomogeneous medium studied here is
the model of a concrete situation, corresponding to a typical scattering experiment.

Let us consider (see figure 1) an incoherent source of radiation (1), which is usually a secondary
source, i.e. the image of a primary source, formed by means of a condenser. We shall assume
that the incoherent source is circular, with a diameter &, and symmetric about the axis Ox.
A collimator (2) with a focal distance &, in whose focal plane the secondary source is situated,

1 The conditions under which a secondary source acts effectively as an incoherent source are discussed by Born
& Wolf (1959) and are normally fulfilled in a usual scattering experiment (Ross 1969 8).
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SCATTERING AND INFORMATION 179

produces a nearly parallel beam, having a (geometrical) divergence 2,/2% < 1. The sample (3)
is contained between the planes x = 0, x = Al. Its inhomogeneity will be described by the local
variation in permittivity from the average

8e(r) = e(r) —(),

where r is the positional vector defining the oriented distance from an arbitrary origin to

@ =3[ eran

is the average permittivity over the volume V of the sample, or any part of it, as the medium is

a generic point, and

assumed to be statistically (i.e. macroscopically) homogeneous. The magnetic permeability will
be supposed uniform and different from the value for vacuum by negligible amounts; the deduc-
tions will also be restricted to media with zero conductivity. For simplicity, the semi-spaces
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x < 0 and x¥ > Al will be considered homogeneous, with a permittivity equal to {¢). This avoids
the additional complication of taking into account losses through reflexion at the planes x = 0,
x = Al, and corresponds to the normal experiment performed with the sample immersed in
a liquid with matching refractive index. A diaphragm (4) in the plane x = 0 delimits the cross-
section of the beam to a circle of diameter &, symmetrical about the axis Ox. The criteria for
choosing, 2, &, and % are discussed in (Ross 19695).

If the inhomogeneous medium is irradiated by a beam of light (or, in general, electromagnetic
radiation), each element of volume dV, becomes the source of a complex amplitude, described
byits spectral density &(r,t). The total scattered electric field E;at an observation point described
by L = mL and at a certain time ¢, is the resultant of all elementary waves & produced at an
anterior time ¢(r, L;v), {—¢(r, L;v) being the time required by the radiation of frequency » to

mLtocf ” ‘”@'IItJ'_LlV)dV,du. (1)

For simplicity, the spectrum of the radiation will be assumed uniform with respect to the

travel from r to L:

12-2
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180 G. ROSS

frequency and restricted to a narrow interval, this being the only case of real practical interest
(quasimonochromaticity). The deductions will be restricted to weakly inhomogeneous media,
i.e. those which do not distort the phase of the passing wave and alter its amplitude only slightly.
In such circumstances (Ross 1968) the Born approximation is valid, and
Ey(r,t(r, L;v)) 8e(r)

2Av ’

&(r,1(r, L;v)) =

where £ is the electric field of the incident wave and Av is the effective bandwidth of the spectral
range of frequencies Av < v < vt Ay
- X < Yo

small compared to the midfrequency

A .

Vo
More exactly, taking into account the finite extent of the scattering volume, we have

Ey(r,t(r,L;v)) 8¢
2Ap

E(r,1(r, L;v)) = ") 1,
where T'(r) is a function which characterizes the geometry of the scattering volume. T'(r) has
the value 1 inside the volume defined by the beam delimited by the diaphragm 4 in figure 1 and
bounded by the planes x = 0, x = Al and vanishes identically outside it. (The amplitude of the
electric field |Ey(r,¢(r, L;v))| is zero outside the beam determined by the diaphragm and, as
the semi-spaces ¥ < 0 and x > A/ were assumed homogeneous, at any point in them 8¢(r) = 0.)
Such functions, which play a great role in structure analysis, have been introduced by Ewald
(1940) and are called ‘shape functions’.
Asis well known, the field is not an observable magnitude; the measured quantity in a scattering
determination is the intensity, defined by
8I(mL) = lim;— "Ey(mL, 1) E¥(mL, 1) ds, 2)

t—> 0

the field being assumed stationary. The asterisk means complex conjugate. From here,

8I(mL)cc 2AVfVD+AfofV|L_,||L_r]|ff }E?o (rst(ry Ly v))

x B (1), (r;, L; ) 8 (,.)ae(r,.) T(r,) T(r;) dVdtdv, (3)

The inner volume integral, giving the space average

tim £ " (1 17, 159) B (1 (0, L) S6(r) Be(r;) ) Tr,) )

t—> 0
lim — fE (r0, t(ry, L3 v)) Ef (r,1(r), L3 v)) 8e(r;) 8e(r;) di YT (1) T(r,))
t>eo b

can be written as

ﬁm;ﬁEWbW%EWN%mJMJm%w>®dm&wwaMVUmx (4

t—> 0

if there is statistical independence between the electric field and the local inhomogeneity. Some
authors (for example Bourret 19624,b) consider the assumption of statistical independence
between the perturbation and field function justified, and apply it whenever a two-point
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SCATTERING AND INFORMATION 181

perturbation and the field occur as factors under a configuration integral, calling it local inde-
pendence. Others classify such an approach as ‘dishonest’ (Keller 1962). Whether this hypothesis
is valid in any circumstance is arguable; obviously, it can be safely made within the range of
validity of the Born approximation (see also Beran & Parrent 1964, §6.3; Molyneux 1968;
Adomian 1963).

Within the brackets indicating the first average in the above expression, the cross-correlation
of the fields at two space-time points is the well-known (Born & Wolf 1959, §10.3) mutual
coherence function I'(r;, r;,t(r;, L;v) —t(ry, L;v)), equal, for quasimonochromatic fields, to
(Beran & Parrent 1964, §4.3):

I'(ry, r;,t(r;, Lyv) —t(r;, Lyv)) = exp (—2mivyry) I'(1, 15, 0)

= exp (—2mivy7;) £ (14 1)), (5)
where Ty = t(r. L;vy) —t(r;, L;v,)
and F(ryt;) = (1) o (1) (13 1))

is the mutual intensity; I(r,) = Z(r,, rz) is the intensity and x the complex degree of coherence
(coherence factor). As is well known, relation (5), in other words the quasimonochromatic
approximation, is valid only for |7| Ay < 1. If the field is assumed to be statistically homogeneous
(i.e. all the statistical moments are invariant with respect to a translation of the spatial variables),

then
VIo(ry) = JIo(r)) = 4
and 1ty 15) = p(t;—1:) = pe),
Where P = rj — T,
With this, relation (4) becomes

A3expl —2mivy ] pu(p) {T(r) T(r+))(Be(r,) 8e(r,)). (6)

It is easy to see that 27TVOT=</€>[|L—T,-|~|L"’i| ,

2

where ky = o /\ <”> kolny

is the average wavenumber in the medium, whose average refractive index is {(n). A, is the
wavelength in vacuum and {A) is the average wavelength in the medium.

As |L—r| =L- mr+—[r (mr)?]—...,

if the size of the scattering volume is sufficiently small compared to the distance sample-
observation point so that the phase shift introduced by the quadratic and higher order terms is
considerably smaller than 1rad, one obtains, retaining only the linear term in the above series of
powers (Fraunhofer approximationt):

exp [ —2mivy 7] = exp [ —<k)imp], (M
where p="r;—1,

The second factor in (6), #(p), the degree of coherence for the radiation field from an extended
quasimonochromatic source, is given by the van Cittert—Zernike theorem (Born & Wolf 1959)

+ The Fraunhofer approximation and its dependence on the degree of coherence has been examined in (Ross
1969 b).
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182 G. ROSS

as the average over the area of the source of the phase factor in the incident wave corresponding
to two points, a distance p = r; — r; apart:

pe) = - | explih (B, —R)1do

where 0y = }7%} is the area of the source, do; an element of its surface at a generic point
and R; and R; are the distances from w to r; and r; respectively.

If e, +8e, is the unit vector which characterizes the direction of propagation (making an
angle ¢ with the axis Ox of the system) of a wave originating at w it is easy to see that

Rj"'Ri = p(e, +de,).
Let r=x+n=yxe, +n,

where « is the component along the Ox axis and n the component in the plane yOz perpendicular

to it, and similarly o=E+y

Inappendix Iitis shown that, if the extent of the secondary source is sufficiently small compared
T
to 77 so that Kb (e, +7tany) 2 < 1,

1=y = explickype] 2 PET) — explickyee.] L, )

where J; is the symbol for Bessel function of order 1.

The complex degree of coherence  is thus a product of two factors. The first, exp [i{k) pe,],
represents the phase factor and it is determined by the direction of the axis of the system; (k) pe,
is the phase difference between the waves from the centre of the source to the points r; and r;
respectively. The second factor is the modulus of the complex degree of coherence; it alone
characterizes the geometry of the collimation system and depends on the area of the source and
focal distance of the collimator.

The third factor in (6) represents the average

T(p) = TI/”L T (1) T(r+¢)dV.

J is a function of the kind known as convolution. In this case it is the convolution square of
the shape function over the irradiated volume V. If, as a first approximation, one considers the
volume V cylindrical, in other words one neglects the finite extent of the secondary source:

T(r) = T(n) T(x)

and 70 = T 70 = [ [ () Ty dor [ 70) 0+8) 0

represents the convolution square of the shape function over the scattering volume (assumed
cylindrical). In appendix II it is shown that

2

~ 2 __ 2
T () = El- T(n) = %arc cos % - 7% M@§~lg

and T(E) =T = I—Kl’
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SCATTERING AND INFORMATION 183
2
7oy = L — (2 7 _29(Z* =)\ (,_¢
so that T (p) = T/—T(r) = (;arccos§—-; 7 1 VI (9)

The graph of the function J (%) is given in figure 2 and that of 7 (£) in figure 3. As the diver-
gence of the beam has been neglected, for # approaching & an increasing relative error may be

expected.
1 1
-9 0 /] =Al 0 Al €
Ficure 2 Ficure 3

Finally, the last factor in (6) is, on the assumption that the field of the local deviation in
permittivity from the average is statistically homogeneous,

Fy(p) = (Be(r) 8e(r+p)) fof Se(r) de(r+p)dV.

Fy;(p) is also, after abstraction of the factor 1/V, a convolution square. If the deviations in permit-
tivity from the average are random, the convolution square over the scattering volume is a
statistical average. For infinife volumes, it is identical to a well-known statistical second-order
moment, namely the autocovariance, defined as

F'(p) = lim fff Se(r) Se(r+p)dV.
V—-)ooV

Some of the main properties of the autocovariance have been briefly outlined in Ross (1968)
and are discussed in the specialized literature.t F’(p) is maximum for p = 0

|F'(p)| < F7(0)
and lim F'(p) =

p—>x0

as can be easily visualized, if one translates the ‘ghost’ (see Hosemann & Bagchi 1962) with
respect to the medium, because the deviations at r and r +p quickly become independent and
therefore the average of their product over an infinite volume is zero.

T An excellent exposition can be found in a recent book by Beran (1968), which presents in a unified manner
the mathematical treatment relevant to various statistical continuum theories in different fields.
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184 G. ROSS

This is, however, no longer true if the random medium has a finite extent. Displacing the
‘ghost’ a distance of the order of and approaching pmax (the maximum extent of the volume V),
the average product of the deviations may not vanish in the ever diminishing volume available
for the average. If the extent of the volume V is much larger than the distance over which the
deviations in permittivity are correlated, i.e. if

a <€ Pmax,

where a4, the correlation distance, is a measure of the average distance over which the deviations
in permittivity from the average are correlated, then

Iy (p) = F'(p) +<{8e®) fr (p), (10)
where (&e?y = F'(0)
is the variance of the random field.
The correction term f3-(p) describes the non-vanishing character, at large p, of the convolution

square Fy (p) for finite volumes and it is a function of direction, because pmaxis. fi-(p) is negligibly
small, practically zero, for all values of p except those very large, approaching pmax. Therefore

for £ < Pmax, FI;(P) = F,(P)'

Of course, the distortion due to the fact that, for p increasing, a smaller volume is available for
the average, is accounted for by the weighting factor 7 (p).

Substituting the expressions for the factors in (6), the scattered intensity can be easily obtained.
The factor of proportionality, accounting for the polarization characteristics of the electro-
magnetic field, was deduced in (Ross 1968) by solving a vector equation and is the same, in the
range of validity of the quasimonochromatic approximation. Characterizing the scattering
phenomenon by the cross-section (or Rayleigh ratio) R rather than intensity, the relation

RO) = oas osd (=58 [ [ [ F(6)7 () 1] (1) exp Licky se) av

00 et st [ [ [ 1) 7)) explicky seav )

is immediately obtained for unpolarized incident field. The Rayleigh ratio is defined as

1 81(s)
") =xg,
where @, is the flux in the incident wave,
s=e,—m

is the coordinate in the Fraunhofer space,

s = 2sinfa, o = arccos (e, m)

and Fp) = %ETP;’

the normalized autocovariance, is known as the autocorrelation function of the random field.
Relation (11) describes the scattering phenomenon in inhomogeneous media of finite extent,
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SCATTERING AND INFORMATION 185

taking into account the geometry of the collimating system, and it is correct within the range of
validity of the quasimonochromatic approximation. The essential problem of the structure
analysis is to determine the statistical parameters which describe the inhomogeneity, irrespective
of the external shape of the scattering volume and of the coherence characteristics of the radiation

field.

3. INFORMATION IN SCATTERING DETERMINATIONS
(a) Noise in scattering patterns

Let us assume first that the incident radiation is highly coherent over the cross-section of the
beam, i.e. that practically |x| (9) = 1 for # < £. This can be achieved, for a given 2, either by
diminishing the diameter of the secondary source, or by using the highly coherent radiation of
a laser. The width of the autocorrelation function F(p), given by the correlation distance a is,
in general, much smaller than the width of either of the curves 7 () and J (§), which are }2
(with an excellent approximation) and Al respectively. If; neglecting the slight distortion intro-
duced, one can assume that 7 (p) = 1 for all p for which F(p) is effectively non-zero (say p < 24),

then F(o) 7 (p) = Flp). (12)

In this case, for F'(p) = F(p) (i.e. isotropy of the random field), relation (11) becomes:

R6) = S ot [ o) sin (G ) dp
+1<2k8>;2 <<5>22> (8 —ds?+s%) ffJ Sr(p) T (p) exp[ick) se]dV. (13)}

Relation (13) states that, with the approximation (12), to the Fourier transform of the auto-
correlation function, which is the angular spectrum of intensity for the ideal case of an infinitely
large volume, a term is added, representing the contribution of the finiteness of the scattering
volume. Neglecting the weighting effect of 7 (p), an approximate expression for the second term
in (13) has been established} in (Ross 19695):

C=36= 30" psin (00 dp
=1 i=1 0

- igo (= 1)y ((53;_)224-3 {[5111 (<K pmax )] ]:20 (—1)f %5%)'_27_“
+[cos (¢k) pmaxs)] 2 (=1)f <<lz>_%;g>~ 1}
+ 3 (-1 (<il>+>23+z (Isin (¢6 pmacs)] 5 (- @ﬁ‘>(f;j,1;?~i>f’
~leos ()], (-1 G, (14)

+ An inadvertence in (Ross 1969 b) is hereby corrected (relation (14)).
1 The formula (14) was established on the assumption that: fi;(p) is isotropic, and that it can be expanded in
a series of powers

T
Srlp) = 2 Q;p.
i=1

13 Vol. 268. A.
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186 G. ROSS

It can be easily seen that the first few terms in the series are (8 = (k) pmaxs):

210, max[cos/)’ sinf  cos 1]

pR 2P
Com—sty . [0 o8 sin g couf]
o= 10, [Tl 0 ch L)
oot R -5

o
I

COS
Hence, C=- iﬁf (91 s + 2 s + Py oo+ 1]

sin 3! 4!
+ lgzﬂ[ 'lemax'l'”z*!gzp;lnax"'é—! ‘Q3p?nax+ ]

cosf[2! 1 31 4l ,
+ e [6fglp?nax(l—m)+ﬁgzpilax+_2‘!g3p?n&x+_'.]

sm 5!
134/))[ ‘szmax+ ‘Q3Pm&x+§ig4pg¢mx+”']“

cos g sin £ cos sin
or C=-4 B +4, I +4, Igaﬂ 4, ﬁzf

As, in general, for all observable s,

B =<k} prmaxs > 1,

. cos (<&
it follows that C~—4, €05 (<) pmaxs) .
k) pmaxs
This represents a function oscillating rapidly around zero, with an interval between two
successive maxima (or minima)

As = A/ pmax, (15)

which describes the ‘speckles’ observed in experiments performed with highly coherent light.
Relation (15) suggests that the aspect of the speckled pattern is a function of the shape of the
scattering volume; this is in agreement with the qualitative observations reported by Rigden &
Gordon (1962). In another paper discussing qualitatively the occurrence of the speckle effect,
Oliver (1963) finds that the ‘grain size’ is inversely proportional to the extent of the scattering
volume. This is indeed the essence of (15), and the interval expressed by it corresponds to the
size of the speckles observed experimentally.

One may say, therefore, that the received signal, which is the scattered intensity measured by
the Rayleigh ratio, is unavoidably affected by noise{ (the second term in relation (13)), unless
the scattering volume is infinitely large (or the wavelength infinitely small, but this is a trivial case
corresponding to the limit of geometrical optics, at which the scattering phenomenon ceases to
occur). The noise is superimposed over the signal, hence the received signal oscillates around the

+ Following the terminology accepted in many fields of physics, Fellgett & Linfoot (1955) suggested the use of

the term ‘noise’ in optics, to denote those fluctuations which, in the circumstances of a given experiment, must be
regarded as unpredictable in detail and therefore a bar to perfectly exact measurements.
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value corresponding to the ideal case of an infinitely large volume. For each s, the noise produces
a region of uncertainty, which ultimately causes the error in determining F(p).

The inevitability of errors, brought into pre-eminence by the epistemological conclusions of
atomic physics, was adopted by the information theory as one of its basic principles, leading to
a complete reappraisal of the importance of experimental errors. Accepting that every method
of observation has its limitations, making experimental errors unavoidable, the problem is how
to achieve the maximum efficiency in observation, in other words how to extract from an experi-
ment the maximum possible amount of information about the parameters of interest, possibly
by sacrificing information which is less relevant. But first, of course, one has to assess the amount
of information obtainable from an experiment, i.e. the information content of a scattering
spectrum. In fact, the generation of a smooth function R(s) would imply an infinite amount of
information per unit coordinate in the Fraunhofer space;?1 this requires, for specification, an
infinite number of data. Therefore, if there is no limit to the subdivision of the coordinate in the
Fraunhofer space, R(s) could be described absolutely faithfully.

However, the region of incertitude produced by the noise around each point, equal in extent
to the grain size of the speckles As = A/pmax, leads to the observation that an interval 0 — spax
cannot be meaningfully divided by more than smax/As = pmax Smax/{A) sampling points at which
R(s) may be measured (and as many points from which F(p) will be determined). This conclusion,
brought into evidence by Gabor (1946), constitutes the essence of the Whittaker—Shannon
sampling theorem (Whittaker 1915; Shannon 1949) and can indeed be reached more rigorously,
for example by expanding R(s), defined in the interval 0 — smax in a Fourier series (or in terms of
any set of orthogonal functions); the function R(s) is assumed periodical, repeating indefinitely
the behaviour of R(s) between 0 and smax. In the range of (spatial) coordinate in the primary
space 0 — pmax/{A), there are only pmax Smax/{A) ‘spectral’ lines, all equally spaced by an interval
1/smax. Two data are associated with each line: the coefficients of the sine and cosine terms in the
expansion; hence in the range of spatial coordinate 0 — pmax/{A) there are 2pmaxSmax/{A) inde-
pendent Fourier coefficients.

Because, however, R(s) is an even function (F(p) is real), all the coefficients of the sine terms
are identically zero and we are left therefore for a normal scattering experiment at frequencies
corresponding to the visible region and higher, in which we measure only the intensity, with
PmaxSmax/{A) independent Fourier coefficients. It must be mentioned, however, that for lower
frequencies, at which the phase of the electric field is an observable magnitude, the sine coeffi-
cients are restored and the number of independent Fourier coefficients becomes 2pmaxSmax/{A).

Here we shall restrict the treatment to the visible and X-ray regions of the electromagnetic
spectrum, in which we are particularly interested and in which, in general, the phase cannot be
detected. It ought to be added, perhaps, that even for visible radiation one can double the number
of independent data available by taking into account the polarization characteristics of the
scattered radiation; this can be indeed useful in studying anisotropic media (e.g. a semi-crystal-
line material), but here this problem will not be pursued.

As the amount of information obtainable from an experiment consists of the number of
independent data (or can be defined as a function of it) which the instrument can extract from
the signal, the above reasoning indicates that the number of independent dimensions or ‘degrees

T With the assumption made, of highly coherent radiation over the cross-section of the incident beam. Later it
will be shown that, with partially coherent radiation, one can obtain a smooth curve, although, of course, the
amount of information per unit coordinate in the Fraunhofer space is not infinite.

13-2
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of freedom’ pmaxsmax/{A) (or, more exactly, the nearest smaller integer) can be regarded as a
measure of the information supplied by the experiment. This conclusion was reached first by
Gabor (1946) in his development of the communication theory.

However, the number of degrees of freedom does not characterize completely the information
derived from an experiment; the number of degrees of freedom represents only one of the two
features of the information content of a result, namely the structural information. The structural
information consists of epistemological or a priort knowledge; it is a priori with respect to the
experiment but, of course, not prior to the development of a plan of observation. Here, a prior:
means simply prior to the experiment in which we are interested; for our purpose, therefore,
a priori is not necessarily taken in the strict Kantian sense, i.e. knowledge absolutely independent
of all experience (Kant 1964, p. 43), but can be interpreted in a more relaxed sense (see, for
example, Eddington 1939, p. 24; MacKay 1950), accepting that epistemological knowledge
cannot be regarded as independent of observational experience altogether.

The structural information is provided by the knowledge of the experimental procedure and,
as such, is, in a Kantian sense, transcendental;t more exactly, the structural information is
determined (or rather limited) by the finite (differentiating) capacity of the instrument, in our
case by the uncertainty introduced by the extent of the speckles. The examination of structural
information, according to Kant (1964, p.59), ‘has not the purpose to extend knowledge, but
only to correct it, and to supply a touchstone of the value, or lack of value, of all a priori
knowledge’. The natural unit of structural information represents one independent datum, one
elementary quantum of structural information; Gabor (1946) coined for it the name logon. The
amount of structural information in a result, the logon content, is the number of independent
categories or degrees of freedom which can be precisely defined.

The second feature of the information content is the quantitative or metrical information. It
is a posteriori with respect to the experiment and it is provided by the conclusions derived from
a study of the results of the observation, which have been obtained in a way described by the
structural information. In fact, the experiment consists of associating a number, which defines
the amount of evidence obtained, with each structural degree of freedom. This number describes
the amount of metrical information obtained.

Let us discuss first the structural information of scattering determinations.

(b) Structural information

The result obtained, namely that the logon-content of a scattering experiment is finite and

equal to N = pmaxSmax] (At
or, more exactly, N < PmaxSmax[{AD (16)

since " is an integer, constitutes the essence of Gabor’s (19564, 5, 1964) expansion theorem,
which states basically that the structural information of a beam of light restricted both in its
lateral and its angular extent is finite.§ Obviously, the expansion theorem is applicable, at least

+ Kant (1964, p. 59) entitles transcendental ‘all knowledge which is occupied not so much with objects as with
the mode of our knowledge of objects in so far as this mode of knowledge is to be possible a priori’.

1 The intervals 0—p,,, and 0—s,,, are sometimes called ‘information intervals’ in the primary space and
Fraunhofer space respectively.

§ Identical to the number of independent eigensolutions of the wave equation in the finite domain defined (see
also Miyamoto 1960).
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approximately, to the phenomenon of scattering in inhomogeneous media. We must not forget
that we are discussing a simplified version of the phenomenon; in fact, the speckled pattern is
much more complicated, and appears as a superposition of effects due to all possible directions
in the three-dimensional scattering volume.

Clearly, the logon-content of the experiment must be at least 1, hence

Pmax-fma,xK/l) > 1 (17

puts into evidence the elementary area ApAs/{(A) =1 (= llogon) in an s—p representation
(Gabor’s diagram of information) and reflects the quantal nature of the structural information
communicable in a scattering experiment.

Relation (16) expresses the equivalence, from the point of view of structural information, of
the interval explored in the Fraunhofer space and the maximum extent of the scattering volume,
measured in wavelength units.

The structural information can be well described by the logon capacity of the experiment,
defined by MacKay (1950) as the number of logons (degrees of freedom) per unit of coordinate
interval. Thus, for a scattering determination, the logon capacity for the Fraunhofer space is:

&L = pmax/{A) logons/unit coordinate in the Fraunhofer space, (18)

or, more exactly, the nearest smaller integer.
The finite logon capacity of the experiment manifests itself in and determines the grain size of
the speckles, i.e. the sampling interval in the Fraunhofer space. Comparing (15) with (18), we

have £ = 1/As.

One can also define a logon capacity for the primary space, which characterizes directly the
resolution in determining F(p):

&’ = smax logons/wavelength unit of coordinate in the primary space. (19)

Obviously, £’ < 2, or, more exactly, %’ can be, for a meaningful measurement, either 1 or
2 logons/wavelength. However, as will be seen below, this limit can be extended, at least for an
inhomogeneous medium, whose inhomogeneity may best be treated from a statistical point of
view.

Relation (18) expresses a principle, essential for scattering measurements, namely that the
transmission of a certain amount of structural information per unit coordinate in the Fraunhofer
space requires a certain minimum number of wavelengths in the extent of the scattering volume.
Thus, for a given minimum As determined by the error in measuring the scattering angle, one
cannot detect inhomogeneities on a scale larger than

This suggests that, for making use of the whole (structural) information available, a minimum

scattering volume (in wavelength units)

Pmax S _1_

Ay 7 As
is required. The condition is important for X-ray scattering experiments and determines, in
fact, the ‘resolving power’ of the experimental arrangement.t

T For obvious reasons, in scattering experiments with X-rays, one is interested in extending upwards the scale of
detail observable and therefore (in contrast to light-scattering experiments) the ‘resolving power’ customarily
describes the maximum extent of the detail observable.
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Conversely, for a given pmax, the sampling interval As, i.e. the distance between two values
of s at which R(s) is measured, should not be chosen smaller than {A)/pmax; to try to do so, in
other words to attempt to talk of ‘an interval As smaller than {A)/pmax’ would be to try to con-
struct a logical pattern identical to that of ‘an extent of the scattering volume larger than pmax’,
which cannot, by definition, appear in any result and is therefore observationally meaningless
(MacKay 1950). A As smaller than (A)/pmax cannot increase the amount of information retriev-
able from the measurement and a As larger than (A)/pmax entails a loss of information. R(s) is
completely determined by specifying its ordinates at a series of points spaced As = {A)/pmax apart.

Therefore
Pmax As[{A> = 1. (20)

Relation (20) defines a ‘characteristic rectangle’ in the diagram of information; the number
of these rectangles is proportional to the logon content. (More exactly, the logon content is equal
to the total area of the rectangles.)

The last expression leads to another observation.

As is well known (see, for example, Ross 1968), scattering measurements cannot provide local
values of the inhomogeneous field investigated, yielding only average values; the average is
taken over the scattering volume. If one is interested in local values of the inhomogeneous field
Pmax represents the uncertainty in locating the detail of interest, i.e. in ascribing its accurate
position. Hence, it may be relevant (for example, if the medium presents a spatial variation of
the mean characteristics of the inhomogeneity) to diminish the beam diameter and concentrate
it on the detail of interest. In this case, of course, the grain size of the speckles unavoidably
increases (for highly coherent radiation) or, what amounts to the same, the logon capacity
decreases. T

Relation (20) suggests that there is a lower limit to the size of the scattering volume, i.e. a
maximum accuracy with which one can establish the position of a detail; obviously, As < 2
and hence

Pmax = A

One cannot possibly locate an inhomogeneity with an uncertainty smaller than half
a wavelength.

It appears also that, in general, the minimum detail detectable is ${A). Indeed, if one attempts
to compute the Fourier transform of the recorded distribution of intensity, it is easy to see from
the sampling or interpolation theorem (see, for example, Goldman 1953 or Arsac 1966) that the
interval in the primary space (measured in wavelength units) between two points at which one
should compute F(p) is Ap .

< >
<A> Smax

i.e. the maximum resolution achievable is

A
a =M <y,
Smax
in agreement, of course, with what was established above about the logon-capacity for the
primary space (see relation (19)).
+ Caution is required in using the so-called microbeam techniques (scattering determinations using beam

diameters of the order of 50 and even lower. It must be emphasized that, for such experiments, relation (12)
cannot automatically be applied.
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Therefore, the thus computed (apart from a factor irrelevant to this discussion)
AN _ Lsmax & <A AP gp
(p Smax P Pmax qgl 1 Pmax 1 Pmax S N
with p = 1,2, ..., 4] where (see relation (16))

N = Pmax Smax
AY

(or, more exactly, the nearest smaller integer), differs from the ideal

Fp) = %f: sR(s) sin (¢k) ps) ds

at least in two important ways. First, the resolution obtainable, i.e. the smallest detail ascertain-
able, is inversely proportional to smax (and hence, at best, to 2). Secondly, the calculated Fshows,
between sampling points, spurious oscillations, of period inversely proportional to smax, because
of the truncation of the angular distribution of intensity, i.e. R(smax) =& 0 (see Ross 1968, relations
(60 to 61)). Besides, the values R(gAs) are affected by the (amplitude of the) speckles, due to the
fact that the scattering volume is finite. Thus, the calculated F'(p) cannot coincide with the true
F(p) unless R(s) is known from s = 0 to s = o0 and the scattering volume is infinite.

Nevertheless, at least for media which can be described as randomly inhomogeneous (on a
scale comparable to the natural unit in the primary space, which is the wavelength) the extent
of the detail measurable can be much smaller than 4{A}. Ideally, for randomly inhomogeneous
media,t for which one can determine only the correlation functions which is a monotonic
(decreasing) function, described, in general, by a very simple expression, there is no lower
bound to the extent of the detail (correlation distance) ascertainable. In this case, one can
overcome the finite resolution (i.e. #” limited by the relation #’ < smax) if, instead of performing
the Fourier transform of the recorded intensity, a trial and error method is used, i.e. the recorded
angular spectrum of intensity is compared with the Fourier transforms of the most usual types
of correlation function, as indicated in (Ross 19694). Indeed, in order to increase the resolution
in determining /(p) one needs, as it was shown above, to extend the interval of coordinate in the
Fraunhofer space, available for determining R(s), to values s > 2. The establishing, by trial and
error, of the shape of R(s), is equivalent to—and can be interpreted as—an extrapolation of R(s)
towards infinitely large values of s. Hence, ideally, there is no lower limit, due to the finite
interval of values of s, to the extent of the detail, at least if it can be expressed by a correlation
distance.

Naturally, by extrapolating the curve R(s) to values s > 2, unforeseeable features, corre-
sponding to finer scales of inhomogeneity, may be lost. Therefore, it is more correct to state that,
ideally, there is no lower limit for the dominant scale of inhomogeneity but finer details (especially
if the dominant correlation distance is smaller than ${A)) may be imperceptible. This is not
necessarily a disadvantage; because many of the fine details (which are mostly unimportant in
structure analysis) are lost, the observed functions R(s) and I¥(p) are much easier to treat quantita-
tively than the exact ones.

Nevertheless, in practice, there is a lower limit to the dominant detail discernible in this way
(and, of course, to lower scales of detail).

The limit is imposed by the amplitude of the noise due to the finite size of the scattering volume.

T Also in the case of particulate scattering, if the shape of the scattering particle is known beforehand and with
the condition of independent scattering.
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The amplitude of the noise can be larger than—and therefore can obscure—the difference
between the ideal distribution of intensity (for an infinite scattering volume) corresponding to
the scale of inhomogeneity investigated and the limit distribution for the extent of the inhomo-
geneity approaching zero corresponding to Rayleigh scattering.t The noise (from all sources)
may also obscure the presence of other correlation functions, corresponding to lower scales of
detail, if its amplitude is greater than the difference between the ideal distribution of intensity
corresponding to the dominant correlation function and those corresponding to smaller scales
of detail (and this is why they may not be detectable in the interval s = (0, 2)).

But, with this, we have started to discuss the amount of evidence posterior to the experiment,
therefore we are in the domain of quantitative or metrical information.

(¢) Quantitative information

The amplitude of the noise determines, in fact, the fineness of the scale on which the value
of R at a sampling point (for each logon) is estimated, i.e. the amplitude of the noise establishes
a graduation below which we cannot locate the result in one interval with a probability larger
than 0.5. On such a scale, marked in ‘minimum meaningful intervals’, a magnitude is specified
by the number of intervals which it occupies. MacKay (1950) coined the name metron for the
unit of quantitative information: it is the quantitative information which enables one interval to
be represented as occupied. The lower the amplitude of the noise, the smaller is an interval of
the scale which it determines. The larger number of intervals thus occupied, corresponds to, in
MacKay’s terminology, a higher metron content. From here, it appears obvious that the metrical
information has also a quantal nature.

The ‘extent’ of the noise, 1.e. the graininess of the speckles, determines therefore the structural
information, while the amplitude of the noise affects the quantitative information. However, if
the extent of the speckles can be easily assessed, the amplitude cannot be, in general, calculated.
The metrical information depends also on the amplitude of the signal, ultimately on the shape
of the correlation function. But this can be established only posterior to the experiment.

Thus, in general, it is impossible to know, before an experiment is performed, how disturbing
the amplitude of the noise will be, i.e. whether the metron content will allow a meaningful assess-
ment of the relevant magnitudes. A few observations are nevertheless possible. For the same
extent of the scattering volume, the coarser the scale of the inhomogeneity, the more disturbing
the noise. Also, of course, the smaller the extent of the scattering volume, the lower the metron
content. This is, in fact, the main obstacle in using microbeam techniques. The patchiness of
scattering patterns recorded with microbeam techniques is illustrative (see, for example,
Birnboim, Magill & Berry 1967) and casts some doubt on the reliability of such methods.

One can establish a posterior: the amount of quantitative information retrievable in a scattering
experiment (or, at least, the bounds between which it can vary); a possibility of assessing it is, for
example, Shannon’s (1949) well-known ‘capacity of the channel’.

Applying Goldman’s (1953) unambiguous terminology to our problem, if the term liniva
designates the value of the dependent variable (for example R) corresponding to a certain s,
quadiva will denote the square of the liniva and the integral of the quadiva in the Fraunhofer
space will be called the quadratic content.

+ Of course, making abstraction of the finite sensitivity of the measuring instrument and also neglecting other

sources of noise. These, however, start to play an important role only for p_,,, larger than the usual values in experi-
ments. The limitation due to the finite extent of the scattering volume, in general, is predominant.
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With this, if P is the average quadiva of the signal (i.e. of the Rayleigh ratio corresponding to
an infinitely large volume) and N is the average quadiva of the noise, the capacity of the channel-

scattering experiment is given by the formula

P+ N

with a factor of proportionality depending on the units chosen. As is well known, the capacity of
the channel can be achieved only by the use of infinitely long sequences, or, in our case, only if
an infinite interval of values for s were available for recording the intensity.

The relation is valid only if the signal and noise in the system are independent (or incoherent),
i.e. their average quadiva (or quadratic content) are additive; this, although probably not
strictly true, can be safely accepted for our problem. However, (21) has been established and is
valid only for white noise and it would be hazardous to assume this for speckleness. For arbitrary
noise, the problem of determining the channel capacity seems insoluble explicitly, Shannon’s
(1949) theory providing only the upper and lower bounds for the maximum rate (per unit
coordinate in the Fraunhofer space) of transmission of (quantitative) information in a noisy
system.

It would be more interesting to establish generally valid criteria which could estimate the
acceptable amplitude of noise in a particular case (i.e. for a given correlation function) but this,
if it is possible, is very difficult. Without exception, noise reduction—or the separation of the
signal from noise—is a fundamental desideratum.

The process of separation of signal and noise is called, in information theory, smoothing; if the
separation is performed automatically by a piece of equipment, the smoothing process is called
filtering and the equipment which performs the separation is called a filter.

One obvious way of reducing the specific weight of the amplitude of the noise is by increasing
the scattering volume.] Nevertheless, the extent of the scattering volume cannot be increased
indefinitely, if not for another reason, at least because the Fraunhofer requirement imposes soon
impracticable distances between sample and observation point. Besides, the finite interval of
electromagnetic frequencies sets, by the condition of quasimonochromaticity, an upper limit to
the extent of the scattering volume, and also, of course, the smaller the scattering volume, the
more exact the Born approximation (Frisch 1966, § 2, 1967, §16).

There is, however, another possibility of extracting the signal from noise: by filtering. The
noise which affects the measured angular spectrum of intensity is produced by the spurious f;-(p)
which, as established above, has practically non-zero values only for p of the order of pmax. Of
course, an accurate filter must remove the noise without distorting the signal; the perfect solution
for cutting off the large values of p without affecting the small ones is an ideal low-pass filter
with a rectangular spectrum

L (p <po)s
ute) - { o
0 (p>po);
po must obviously be a < Py < Pmax

t It is well known in communication theory that one can exchange bandwidth for signal/noise ratio; the noise
improvement factor increases at least linearly with the bandwidth. Indeed, this effect, i.e. the reduction in the
specific weight of the noise amplitude with the extension of the bandwidth, has been reported, for the image plane
(i.e. primary space) in holography (or other image forming systems) by Enloe (1967) and Gerritsen, Hannan &
Ramberg (1968). Their formulae and quantitative results, obtained assuming a model not valid to the problem
under discussion, cannot be readily applied here. Nevertheless, the deductions in this paper are in agreement with,
and follow the trend expressed in their conclusions.

14 Vol. 268. A.


http://rsta.royalsocietypublishing.org/

)
A

/

PN

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

/A \

Py
'
S D

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

194 G. ROSS

where the correlation distance a estimates the average extent of the scale of inhomogeneity. With
such a filter, the second term in (13) vanishes, while the first is left unchanged; the smoothed
angular spectrum of intensity thus obtained corresponds to the ideal case of an infinite scattering
volume. However, it is known in communication theory that, according to the Paley—Wiener
criterion, such a filter with a sharp cut-off cannot exist.

There is, nevertheless, available a physically realizable low-pass filter: the partial coherence.
Let us rewrite (11), substituting for |x| () the expression given by (8):

R(s) = k)t @ (8~4§2+54)fffVF(p) T (p) 2{1%0-%1——“/2% exp [i¢k) sp]dV

1287% (e)? D2 F
B s [[[ Lk D1 92F)
+ 12872 <e>2 (8—ds®+s Jr(e ko D1 0|2F exp[i<k) sp] dV. (22)
1.0
0.8
0.6
04
0.2
0 /N -
"0.20 5 10 -
FiGUurE 4
ko D1 02F) ' tven |
The graph of |#| (7) = 2 XX against k) 2, 9/2F is given in figure 4.

The width of this curve, i.e. the value of the argument k,9,9/2% for which u(y) = 0.5
corresponds to ky Dy |2F = 2

(more exactly 2.22) which means that the width of the curve corresponds to the coherence

distance Neon = 4 [ky Dy (23)

The coherence distance 7,y is the effectivet width of the low-pass filter.

¥ Interference effects do occur for values of coherence factor smaller than 0.5. The width of the filter represents
only an average value.
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An accurate filter does not distort the signal; for this, |#| must be practically unity for all
values of p for which F(p) #+ 0. The obvious condition which has to be fulfilled is

N con > a. (24’)

In order to have an efficient reduction of the noise, for a given pmax, Z; and % must be chosen
so that Neon < Pmax. (25)

In practice, of course, a compromise must be reached. Using visible light, for example, a is
in general smaller than a wavelength and a reasonable value for 2 is 1 mm ~ 2000A,;
Neon =~ 25047, is therefore a good compromise, reached for &,/% ~ 25 x 10~4,

Even if (24) is not fulfilled, as long as @ < 0y, the filter will transmit the signal, of course
distorting it. It must be emphasized, however, that the filter will not transmit any information
about inhomogeneity larger than the effective width. Like Eddington’s (1939, p. 16) ichtyologist,
we must not be surprised, therefore, if we do not find any inhomogeneity on a scale larger than
Neon (€€ also Gabor 1964). This is very important in practical determinations, when one does not
know a priori the scale of inhomogeneity investigated, or if the sample presents several scales of
inhomogeneity.

It must be realized that 7.,y is, at any rate within the limit of validity of the quasimono-
chromatic approximation, a two-dimensional filter acting on a three-dimensional problem. The
result is, nevertheless, extremely good for a judicious compromise, consisting of an efficiently
smoothed angular spectrum of intensity.T

Assuming that le| () T () F(p) ~ F(p),

the relation
R() = G oot SR [ o) s (Ghy ) d

+ e gyt 8=+ [ [ [ folo) 228 NEE) 70 explicky seldv - (20

is obtained, with a drastically diminished second term; no speckle effect can, in general, be
observed in partially coherent radiation, which practically provides the ideal distribution of
intensity corresponding to an infinite scattering volume.

The metron content of individual logons is therefore increased but, obviously, the logon
content decreases;} the logon capacity of the experiment becomes

Z = 770011/</1>‘

It is not easy to establish the change in the total metron-content of the result and even more
difficult to establish criteria. If we imagine, as suggested by MacKay (1950), the information-
vector of length 4/i (¢ = total metron content of the result) defined in a space having a number of
dimensions equal to the logon content, the metron content of each logon being the square of the

1 The reduction of the amplitude of the noise by decreasing the coherence of the radiation has been observed for
holography and discussed by various authors (for example Bertolotti, Gori & Guattari 196%); from the point of
view of image formation this problem is studied by Considine (1966) and some aspects are also outlined by Thomas
(1968) (see also Thompson 1969). The coherence requirements in wavefront reconstruction have been investigated
by various authors, starting with Gabor (1949, 1951). (See also Reynolds & De Velis 1967 and De Velis & Reynolds
1967).

91: )The loss in resolution with the reduction in coherence has been observed in holography (Reynolds & De Velis

1967).
14-2
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projection of the information vector on the respective axis, the adjustment of pmax and 9.
corresponds to a rotation of the information vector and probably a change in its length.

The ultimate effect of the low-pass partial coherence filter consists of increasing the concentration of metrons
in the logons which one really wants to observe, provided by the effective width of the filter.

By adjusting the a priori data, therefore, one can create the optimum compromise for the
scattering measurement (although, as said above, it is difficult to establish criteria for this), in
other words, one can improve the accuracy in measuring parameters of interest by ignoring
others.

It may be mentioned here that the low-pass filter aspect of partial coherence can be inferred,
for example, from the elegant experiment performed by Thompson & Wolf (1957). If their result
is interpreted from the reciprocal point of view adopted here, one is easily led to the observation
that, with a judicious choice of 7., one can obtain information either on the individual pinholes
or on their reciprocal position.

The effect of the size of the secondary source (i.e. of the coherence distance) upon the aspect
of the speckled pattern was also beautifully illustrated by Hosemann & Bagchi (1962, chap. vi).

4. CONCLUSIONS

The considerations above enable one to answer the fundamental question posed at the
beginning: what do we really observe in a scattering experiment?

It is clear from our deductions that, once the design of the (scattering) experiment is
established, certain characteristics which any observation will present—and which will be
discovered a posteriori—can be foreseen a priori, simply because the pre-established plan of
observation will be employed. The occurrence of speckles in highly coherent radiation, for
example, is, from this point of view, a priori epistemological knowledge.

As in all similar problems, the spurious oscillations which, for scattering phenomena appear
as speckles, are due to the non-zero values, of the function defined in the primary space, at the
point of truncation, i.e. to the non-zero values of the convolution square of the inhomogeneity
for p = pmax. However, the finite sampling interval in the Fraunhofer space, although equal to
the grain size of speckles, is not due to the non-zero value of the function at the point of truncation,
but only to the fact that a finite interval of variable in the primary space is available. Even if, by
filtering, the spurious oscillations are suppressed, or at any rate, the speckle noise is reduced to
such an extent that it practically disappears, the sampling interval remains finite; in fact, as has
been shown above, its length increases.

Such effects are well known in, for example, Fourier transform spectroscopy, for which the
commonly applied apodization technique is the mathematical equivalent of the use of partially
coherent radiation in scattering determinations. Indeed, the shape of the low-pass partial
coherence filter is similar to the apodizing function sinc (¥/X) proposed by Strong & Vanasse
(1959). One must not forget, however, that, because of the dimensional multiplicity of the primary
space, the problem is more complicated for scattering experiments than for spectroscopic
determinations.

The treatment developed above was based on the assumption, which corresponds to the
typical scattering experiment, that pmax > @ and, in this case, it has been possible to express the

average Fy(p) as a sum Fy(p) = F'(p) + (8¢ fy (0)-

+ “We can know a priori of things only what we ourselves put into them’ (Kant 1964, p. 23).
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Obviously, if the extent of the scattering volume is of the same order of magnitude as the
correlation distance, the above decomposition is no longer valid and F(p) is no longer retrievable
from the computed Fy(p) (or, more exactly, Fy(p) 7 (p)). It may be mentioned that, in this case,
as can be easily seen from the convolution theorem, the minima of the speckles become zero.
This explains the high amplitude of the speckles occurring with microbeam techniques and
stresses the need for caution in such measurements. Taking into account that also the assump-
tion (12) is, in general, not applicable, one is led to the formulation of what is probably a funda-
mental principle of scattering determinations: the extent and position of a detail can only be
known with a mutually related uncertainty or, otherwise expressed, a combination of exact
extent of a detail with its exact position is not observable.

The treatment carried out in this paper was intended as a contribution towards establishing
a model which approximates better the conditions of a real experiment. Such ideal assumptions
as the infinitely large character of the scattering volume or the infinitely small extent of the
secondary source and spectral interval of electromagnetic frequencies have been eliminated from
the theory of scattering determinations presented here.

The result obtained by taking into account the finite extent of the scattering volume and the
coherence characteristics of the radiation field pointed to the observation that no scattering
experiment is able to give results of infinite accuracy, no scattering experiment is able to provide
an infinite amount of information. This conclusion, namely the finiteness of information available
toman, has beensingled out (van Soest 1956) as the most important principle of information theory.

Based on this principle, it has been possible to suggest the way in which one can increase the
efficiency of scattering determinations, i.e. the amount of relevant information retrievable from
an experiment. To achieve this, was the main object of the work presented here.

AprrPENDIX I

Calculation of the degree of coherence

rory = [ 1) SPEORLN 4,

R,R,
S (15 15 )
L 1‘ = 73 P
w(ry, 15) JI(r)JI(
where I(r) —f )d
Hence, p= f exp[ick) (R, — Ry)] do,
1J oy
R,—R; = p(e,+8e,) = AD (see figure 5)
where p=AB, 7 =BC, 8e,=2sinly, x=pe,=AC = AG,
p(e,+8e,) = AG+GD = AG+ HD — HG.
As CG = 2pe,sin L4,

HG = 2pe,_sin? vy,
HD = CM = ysiny,
ole,+5e,) = pe, +nsiny — 2pe, sin by
= pe,cos Y +ysiny = (pe,+ytanyy) cos .
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: 1 .
Hence B=_ f exp [i<k) (pe, + ytan yr) cos Y] w dw db,
1J oy

where 6 is the angle between the plane of the drawing and w. As

4

cosyr = 1—~+4—'—...

if k) (pe,+tanyy) 392 < 1,

. 1 (32 fon . 3]
1 = exp [i{k) pe,] &:fo fo [exp iKk)y DF cos 9] wdwds,

1 o
because tan i = wF cos 0,
koD y|2F)
F = Ji(ko 21 7[2F)
rom here exp[i<k) pe,] 2 R

FI1GURE 5

AprpEnDIX II

The convolution square of a circle
I'(n ——{
) 0 (

The convolution square of the shape function

T(n ff T(n) T(n+n)do

can be easily calculated by using the graphical interpretation of the convolution operation.t

Figure 6 shows the original function and its ‘ghost’ shifted by the vector . The shaded portion
2

represents the area common to both of them and it is a measure of ff?n} for a displacement 7.
An elementary calculation leads to the result
"y
T(n) = §9*arc cos (1)) — by (2 -

1 The function T'(n) is symmetrical with respect to the origin. It can be shown (Hosemann & Bagchi 1962) that
for such functions, called usually ‘centrosymmetric’, the convolution square is identical to the convolution product.
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2
and, as T () = '}.‘_ (n),

2 2
T (n) = —arc cos%—;é?—é\/(ﬂz—nz).

The convolution square of the one-dimensional shape function (Dirichlet’s step function)

b (e-3al < 3,

T0 =10 (jx—1a1 > 3A0).

FIGURE 6

The convolution square of the one-dimensional shape function

(%) =f: T(x) T(x+E)dx

can be immediately calculated; it is easy to see that

7 (&) = T(%)/AL,

and g
T (§) = 1-§/A]

i.e. the triangular function.
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